skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Selden, Corday"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The apparently obligate symbiosis between the diazotroph Candidatus Atelocyanobacterium thalassa (UCYN-A) and its haptophyte host, Braarudosphaera bigelowii , has recently been found to fix dinitrogen (N 2 ) in polar waters at rates (per cell) comparable to those observed in the tropical/subtropical oligotrophic ocean basins. This study presents the novel observation that this symbiosis increased in abundance during a wind-driven upwelling event along the Alaskan Beaufort shelfbreak. As upwelling relaxed, the relative abundance of B. bigelowii among eukaryotic phytoplankton increased most significantly in waters over the upper slope. As the host’s nitrogen demands are believed to be supplied primarily by UCYN-A, this response suggests that upwelling may enhance N 2 fixation as displaced coastal waters are advected offshore, potentially extending the duration of upwelling-induced phytoplankton blooms. Given that such events are projected to increase in intensity and number with ocean warming, upwelling-driven N 2 fixation as a feedback on climate merits investigation. 
    more » « less
  2. The cyanobacterium  Trichodesmium  plays an essential role supporting ocean productivity by relieving nitrogen limitation via dinitrogen (N 2 ) fixation. The two common Trichodesmium clades,  T. erythraeum  and  T. thiebautii , are both observed in waters along the West Florida Shelf (WFS). We hypothesized that these taxa occupy distinct realized niches, where  T. thiebautii  is the more oceanic clade. Samples for DNA and water chemistry analyses were collected on three separate WFS expeditions (2015, 2018, and 2019) spanning multiple seasons; abundances of the single copy housekeeping gene  rnpB  from both clades were enumerated via quantitative PCR. We conducted a suite of statistical analyses to assess Trichodesmium  clade abundances in the context of the physicochemical data. We observed a consistent coastal vs. open ocean separation of the two clades:  T. erythraeum  was found in shallow waters where the concentrations of dissolved iron (dFe) and the groundwater tracer Ba were significantly higher, while  T. thiebautii  abundance was positively correlated with water column depth. The Loop Current intrusion in 2015 with entrained Missisippi River water brought higher dFe and elevated abundance of both clades offshore of the 50 m isobath, suggesting that both clades are subject to Fe limitation on the outer shelf. Whereas, previous work has observed that  T. thiebautii  is more abundant than  T. erythraeum  in open ocean surface waters, this is the first study to examine  Trichodesmium  niche differentiation in a coastal environment. Understanding the environmental niches of these two key taxa bears important implications for their contributions to global nitrogen and carbon cycling and their response to global climate change. 
    more » « less
  3. Abstract. Marine diazotrophs convert dinitrogen (N2) gas intobioavailable nitrogen (N), supporting life in the global ocean. In 2012, thefirst version of the global oceanic diazotroph database (version 1) waspublished. Here, we present an updated version of the database (version 2),significantly increasing the number of in situ diazotrophic measurements from13 565 to 55 286. Data points for N2 fixation rates, diazotrophic cellabundance, and nifH gene copy abundance have increased by 184 %, 86 %, and809 %, respectively. Version 2 includes two new data sheets for the nifH genecopy abundance of non-cyanobacterial diazotrophs and cell-specific N2fixation rates. The measurements of N2 fixation rates approximatelyfollow a log-normal distribution in both version 1 and version 2. However,version 2 considerably extends both the left and right tails of thedistribution. Consequently, when estimating global oceanic N2 fixationrates using the geometric means of different ocean basins, version 1 andversion 2 yield similar rates (43–57 versus 45–63 Tg N yr−1; rangesbased on one geometric standard error). In contrast, when using arithmeticmeans, version 2 suggests a significantly higher rate of 223±30 Tg N yr−1 (mean ± standard error; same hereafter) compared to version 1(74±7 Tg N yr−1). Specifically, substantial rate increases areestimated for the South Pacific Ocean (88±23 versus 20±2 Tg N yr−1), primarily driven by measurements in the southwestern subtropics,and for the North Atlantic Ocean (40±9 versus 10±2 Tg N yr−1). Moreover, version 2 estimates the N2 fixation rate in theIndian Ocean to be 35±14 Tg N yr−1, which could not be estimatedusing version 1 due to limited data availability. Furthermore, a comparisonof N2 fixation rates obtained through different measurement methods atthe same months, locations, and depths reveals that the conventional15N2 bubble method yields lower rates in 69 % cases compared tothe new 15N2 dissolution method. This updated version of thedatabase can facilitate future studies in marine ecology andbiogeochemistry. The database is stored at the Figshare repository(https://doi.org/10.6084/m9.figshare.21677687; Shao etal., 2022). 
    more » « less
  4. Abstract Climatic changes have decreased the stability of the Gulf Stream (GS), increasing the frequency at which its meanders interact with the Mid‐Atlantic Bight (MAB) continental shelf and slope region. These intrusions are thought to suppress biological productivity by transporting low‐nutrient water to the otherwise productive shelf edge region. Here we present evidence of widespread, anomalously intense subsurface diatom hotspots in the MAB slope sea that likely resulted from a GS intrusion in July 2019. The hotspots (at ∼50 m) were associated with water mass properties characteristic of GS water (∼100 m); it is probable that the hotspots resulted from the upwelling of GS water during its transport into the slope sea, likely by a GS meander directly intruding onto the continental slope east of where the hotspots were observed. Further work is required to unravel how increasingly frequent direct GS intrusions could influence MAB marine ecosystems. 
    more » « less
  5. Abstract Dinitrogen (N2) fixation is an important source of biologically reactive nitrogen (N) to the global ocean. The magnitude of this flux, however, remains uncertain, in part because N2fixation rates have been estimated following divergent protocols and because associated levels of uncertainty are seldom reported—confounding comparison and extrapolation of rate measurements. A growing number of reports of relatively low but potentially significant rates of N2fixation in regions such as oxygen minimum zones, the mesopelagic water column of the tropical and subtropical oceans, and polar waters further highlights the need for standardized methodological protocols for measurements of N2fixation rates and for calculations of detection limits and propagated error terms. To this end, we examine current protocols of the15N2tracer method used for estimating diazotrophic rates, present results of experiments testing the validity of specific practices, and describe established metrics for reporting detection limits. We put forth a set of recommendations for best practices to estimate N2fixation rates using15N2tracer, with the goal of fostering transparency in reporting sources of uncertainty in estimates, and to render N2fixation rate estimates intercomparable among studies. 
    more » « less